Third Semester B.E. Degree Examination, June 2012 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Missing data may be assumed suitably.
3. Draw equivalent circuit wherever necessary.

PART – A

- 1 a. Define :
 - i) Transition capacitance ; ii) Diffusion capacitance ; iii) Reverse recovery time. (06 Marks)
 b. For the circuit shown in Fig.Q.1(b), sketch the output waveform and transfer characteristics for cut-in voltage = 0.7 V. (08 Marks)

c. Sketch the output voltage waveform for the circuit shown in the Fig.Q.1(c). Assume Si = 0.7 V. (06 Marks)

- 2 a. Determine the levels of I_{CQ} and V_{CEQ} for the voltage divider configuration using the EXACT and APPROXIMATE techniques. Use $V_{CC} = 18$ V, $R_1 = 82$ k Ω , $R_2 = 22$ k Ω , $R_C = 5.6$ k Ω , $R_E = 1.2$ k Ω , $\beta = 50$. (08 Marks)
 - b. For the circuit shown in Fig.Q.2(b), determine the range of possible values of V_c. Assume silicon transistor with $\beta = 200$, V_{cc} = 15V. (06 Marks)

- c. Derive an expression for the stability factor $S(\beta)$ for a collector feedback bias circuit with $R_E = 0\Omega$. (06 Marks)
- 3 a. Derive the expression for A_v , A_i , Z_i and Z_o of a voltage divider bias circuit using r_e model. (10 Marks)
 - b. For the circuit shown in Fig.Q.3(b), calculate r_e , z_i , z_o , A_V , A_I , $\beta = 120$, $r_o = 40 \text{ k}\Omega$ for un bypassed (R_E). (10 Marks)

10ES32

10ES32

4 a. Use the network shown in Fig.Q.4(a). i) Determine f_{H_i} and f_{H_0} ; ii) Find $F_{(B)}$ and F_T .

 $\begin{array}{l} \text{Take } C_{\pi}(c_{bc}) = 36 \text{ pF}, \ Cu(c_{bc}) = 4 \text{ pF}, \ C_{cc} = 1 \text{ pF}, \ C_{wi} = 6 \text{ pF}, \ C_{wo} = 8 \text{ pF}, \ r_o = \infty \Omega. \ \textbf{(12 Marks)}\\ \text{b.} \quad \text{Define } f_{\alpha}, \ f_{\beta} \text{ and } f_T \text{ and state the relation between } f_{\beta} \text{ and } f_T. \end{array}$

PART – B

- 5 a. Obtain the expression for Z_{in} , Z_o and A_v for a Darlington Emitter follower. List the advantages of Darlington Emitter follower. (10 Marks)
 - b. List the general characteristics of negative feedback amplifiers. (04 Marks)
 - c. Determine the voltage gain, input and output impedance with feedback for voltage series having A = -100, $R_i = 10 \text{ k}\Omega$ and $R_o = 20 \text{ k}\Omega$ for feedback $\beta = -0.1$. (06 Marks)
- 6 a. Explain with a neat sketches, how power amplifiers are classified. (08 Marks)
 - b. With a neat circuit diagram, explain the working of a complementary symmetry class B amplifier. (08 Marks)
 - c. Calculate the 2nd harmonic distortion for an O/P waveform displayed on an oscilloscope provides the following measurements : $V_{CE Min} = 1V$, $V_{CE Max} = 22V$, $V_{CEQ} = 12V$. (04 Marks)
 - a. What is Barkhausen criterion? Explain how oscillations start in an oscillator. (06 Marks)

7

- b. Differentiate between RC phase shift oscillator and Wein Bridge oscillator. (06 Marks)
- c. Explain with a neat circuit diagram of a Hartley oscillator. Write the expression for the frequency of oscillations. (08 Marks)
- - b. Design the values of R_D and R_S for the network shown in Fig.Q.8(b) that will result in a gain of 8 using a relatively high level of g_m for this device defined at $V_{GSQ} = 1/4 V_p$. (10 Marks)

